[Contents] [Index] [Help] [Browse <] [Browse >]

                            Warp Engine Reference


  The Warp Engine is a popular 68040 processor board that replaces the A3640.
  It includes four 72-pin SIMM sockets and a Fast SCSI-2 host adapter.

  Memory: Any combination of 4M, 8M, 16M, or 32M 72-pin SIMMs, either 32-bit
  or 36-bit wide. Add them starting with SIMM4 and working down to SIMM1. It
  is advised that you put your largest SIMM in the SIMM4 socket.

  SIMM Speed: For a 28 MHz Warp Engine, 80 ns SIMMs are adequate. A 33 MHz
  Warp Engine requires 70 ns SIMMs, while a 40 MHz board needs 60 ns. A wait
  state jumper enables the use of 70 ns SIMMs with 33 and 40 MHz boards
  (although there is a slight performance reduction).

  SIMM Types: Single or double-sided SIMMs will work, although the double-
  sided 16M SIMM is not recommended due to high power consumption. (This
  probably also applies to double-sided 32M SIMMs; the Warp Engine manual
  doesn't say so, perhaps because they are rare at present.)

  Upgrading: All that is required to convert a 28 MHz Warp Engine into a
  33 MHz or 40 MHz Warp Engine is to replace the oscillator and processor
  (although memory SIMMs slower than 60 ns may require jumpering jumper D to
  enable a wait state). On some variations of the Warp Engine, the 68040 may
  be soldered in place, making upgrades difficult at best.

  Memory Setup [courtesy of Steve Kelsey, Warp Engine hardware designer]

  "There are two jumpers (the second and third pair of pins on JP2) that
  select the SIMM slot addressing. One of the jumpers controls whether or not
  any of the installed SIMMs are dual bank (i.e. 8 or 32 MB). The other
  jumper controls whether or not any of the SIMMs are 16 MB per bank (i.e.
  16 or 32 MB). If the jumpers are set correctly and the SIMMs are installed
  in a reasonable order, most combinations of SIMMs will result in one
  contiguous block of memory. A few combinations will result in two or three
  noncontiguous blocks. The Warp Engine has no limitation on how you mix 4,
  8, 16 and 32 MB SIMMs. You can put them in any order and you can set the
  size and dual bank jumpers any way you want. The automatic DRAM sizing
  routines figure it all out. But some combinations, while completely legal
  and functional, are not optimal. So, if you configure your Warp Engine
  properly, you should be able to get the best performance possible.


  If you have one or more 16 MB SIMMs (and possibly 1 or more 4 MB's), you
  should set the size jumper to 16/32 (off) and the dual bank jumper to
  single sided (on). Then, install your 16 MB SIMMs first, followed by any 4
  MB SIMMs. This will make all the 16 MB SIMMs and the first 4 MB SIMM (if
  present) all one contiguous block.

  There are many other combinations that work in a similar way. There are
  also some combinations that will result in two or more chunks of memory.
  The thing to remember is that you should propperly set the jumpers
  according to the types of SIMMs you have, and then install them in a
  reasonable order."

  See also:  Processor Board Mounting
             Processor Cooling
             External SCSI Connector

  Board Layout
  | :::::::::::  JP2      |__Fast_SCSI-2__| JP1 |                    |
  | LKJHGFEDCBA           o---- o---- o----     |                    |
  |                       SCSI Terminators      |                    |
  |================================  _________  |                    |
  |                           SIMM1 |         | |       68040        |
  |================================ |   NCR   | |                    |
  |                           SIMM2 |  53C710 | |                    |
  |================================ |         | |                    |
  |                           SIMM3 |_________| |                    |
  |================================             |____________________|
  | +++    +++                SIMM4                                  |
  | +++    +++                                                       |
  |____________                                                      |
     ^         |   ::::::::::::::::::::::::::::::::::::::::::::::    |
  28-40 MHz    |   ::::::::::::::::::::::::::::::::::::::::::::::    |
  Oscillator   |_____________________________________________________|


    JP1: SCSI Termination Power  
           (Off: termination power not supplied to SCSI bus)
           (On: termination power supplied to SCSI bus)

      A: Mode Select    (Off: 68040 enabled, On: 68040 disabled)
      B: SIMM Type      (Off: double-sided, On: single-sided)
      C: SIMM Bank Size (Off: 16M, On: 4M)
      D: Wait State     (Off: no wait state, On: 1 wait state)
      E: reserved
      F: MMU Disable    (Off: MMU enabled, On: MMU disabled)
      G: Cache Disable  (Off: caches enabled, On: caches disabled)
      H: SCSI Config (see below)
      J: SCSI Config (see below)
      K: SCSI Config (see below)

    JP3: reserved

    JP4: used for A3000 version *only* (connects to pin 21 of U350)

  SCSI Configuration Jumpers (H, J, K on JP2)

    K  J  H    (0=Open, 1=Closed)
    -  -  -

    0  0  0    SCSI autoboot disabled

    0  0  1    10-second delay, LUN scan, not synchronous

    0  1  0    10-second delay, LUN scan, 200 ns synchronous

    0  1  1    10-second delay, LUN scan, 100 ns synchronous

    1  0  0    no delay, LUN scan, 200 ns synchronous

    1  0  1    no delay, LUN scan, 100 ns synchronous

    1  1  0    no delay, no LUN scan, 200 ns synchronous

    1  1  1    (default) no delay, no LUN scan, 100 ns synchronous

Converted on 02 Jun 1997 with RexxDoesAmigaGuide2HTML 2.1 by Michael Ranner.